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We present here a complete description of all asymptotic regimes of conduc-
tivity in the so-called ‘‘Geometric Strong Magnetic Field limit’’ in the 3D single
crystal normal metals with topologically complicated Fermi surfaces. In partic-
ular, new observable integer-valued characteristics of conductivity of topological
origin were introduced by the present authors a few years ago; they are based on
the notion of Topological Resonance which plays a basic role in the total
picture. Our investigation is based on the study of dynamical systems on Fermi
surfaces for the semi-classical motion of electrons in a magnetic field.
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1. INTRODUCTION

We consider the implications of the so called ‘‘Geometric Strong Magnetic
Field limit’’ for the conductivity in normal metals with topologically com-
plicated Fermi surface in the presence of a homogeneous magnetic field.
The corresponding limit can be defined by the relation 1° wBy. Here wB is
the cyclotron frequency for the electron in crystal and y is the mean free
motion time between scattering acts. This theory is based on the use of a
kinetic equation for the semiclassical electrons in a crystal in an external
field. Let us say that the corresponding conditions for the external fields
are always satisfied for the experimentally available electric and magnetic
fields in the case of normal metals. We can speak, for example, about the
limit of very strong magnetic fields in the experimental sense where the



semiclassical approximation still gives the main features of transport phe-
nomena. It works until the magnetic flux through the elementary cell of the
ion lattice is small in comparison with the quantum unit. Taking into
account the value of the physical parameters in the real single crystal
normal metal (like gold, for example) we have finally 1t° B° 103t for
temperatures T \ 1K. We will not discuss here any questions of rigorous
foundations of this approach (very standard in the physics literature
dedicated to the transport phenomena). The detailed explanations of this
method can be found in classical books (see, for example refs. 7–10). Large
numbers of physicists use it. Let us give here also the refs. 35 and 36 where
the mathematically rigorous approach to the semiclassical motion of elec-
trons in an electromagnetic field and lattice can be found. Indeed, no
rigorous theory of the kinetic equation was developed yet, so while these
papers are very good they don’t make our results about conductivity more
rigorous.
We will consider the electron states in a crystal parameterized by the

energy bands and the quasimomentum p defined modulo the reciprocal
lattice vectors. From the topological point of view we can say that quasi-
momentum belongs to the three-dimensional torus T3 (Brillouen zone)
rather than to the Euclidean space R3. The torus T3 arises as factorization
of the space R3 with respect to the reciprocal lattice. Topologists say that
the space R3 is a covering over the 3-torus T3. The periodic dispersion
relation E(p) of any energy band can be considered as a one-valued con-
tinuous function on the torus T3. The Fermi surface SF: E(p)=EF can also
be considered as a smooth compact two-dimensional surface without
boundary embedded in the three-dimensional torus T3. In this paper we
will often compare these two pictures in the 3-torus T3 and in the total
Euclidean 3-space of quasimomenta. We will use the equation ṗ=Fext both
in the torus T3 and in the covering Euclidean 3-space R3 for the homoge-
neous force Fext. In particular, we will consider the properties of the trajec-
tories of this system both in these two spaces which will be very convenient
for our consideration. Following the standard approach, we consider a
system:

ṗ=
e
c
[NE(p)×B]+eE

for the semiclassical electron in both homogeneous electric and magnetic
field. The value of electric field E is generally very small in experiments
measuring the conductivity. Therefore only the trajectories of the system

ṗ=
e
c
[NE(p)×B] (1)
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should be investigated in this approach. The trajectories of (1) in the
Euclidean 3-space are given on the energy level E(p)=const by the plane
sections orthogonal to magnetic field. So we have the analytic integrability
of the system (1) in the 3-space R3. However, the global structure of the
trajectories on the 3-torus can be highly nontrivial after identification the
quasimomenta equivalent modulo the reciprocal lattice.
The dynamical system (1) conserves also the volume element d3p in T3

and does not change at all the Fermi distribution. So, in the absence of the
electric field E we will have the electron distribution unchanged (up to the
quantum corrections). Nevertheless, the response of this system to small
perturbations will be completely different from the case B=0 and depend
strongly on the geometry of trajectories of the dynamical system (1).
This dependence was first discovered by the school of I. M. Lifshitz

(I. M. Lifshitz, M. Ya. Azbel, M. I. Kaganov, V. G. Peschanskii (1–3, 5, 6, 8)) in
1950’s. Thus, in the work (1) the crucial difference in conductivity was found
for the contribution of the closed and open periodic electron trajectories in
p-space considered as the total Euclidean 3-space R3. Namely, it was shown
that the first case corresponds to the total decreasing of conductivity in the
plane orthogonal to B for BQ. while the second case corresponds to the
strong anisotropy of conductivity in the plane orthogonal to B in the same
limit: conductivity vanishes just in one direction in this plane only depend-
ing on the mean direction of the open periodic trajectory. In the works (2, 3)

the interesting examples of Fermi surfaces and electron trajectories were
considered. However the work (3) contains some conceptual mistake: open
trajectories were found for the generic family of magnetic fields with
different mean directions. This result is wrong. It contradicts to the
‘‘Topological Resonance’’ which is a base of our main results. (23, 28) We will
discuss it in the Chapter 2.
The problem of classification of all possible trajectories on the Fermi

surfaces was first set by S. P. Novikov (11) and then considered in his school
(S. P. Novikov, A. V. Zorich, I. A. Dynnikov, S. P. Tsarev, A. Ya.
Maltsev (12, 13, 16–34)).
The full classification of the conductivity tensors in the Geometric

Strong Magnetic Field Limit (GSMF-limit) can be given now as a result of
the topological studies of this important class of dynamical systems on the
Fermi surfaces. The most important feature of this new picture is the
invention of the observable ‘‘Topological numbers’’ in the conductivity
which always appear in GSMF-limit in the situation when the conductivity
in the plane orthogonal to the generic magnetic field B reveals the strong
anisotropy for BQ. which is stable with respect to the small rotations of
the directions of B. These Topological numbers have the form of the triples
of integers (ma1 , m

a
2 , m

a
3). They describe some integral planes C

a in the
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reciprocal lattice. The directions of B for which the given triple
(ma1 , m

a
2 , m

a
3) can be observed give always a region Wa of non-zero measure

on the unit sphere. We call the region Wa on the unit sphere the ‘‘Stability
zone’’ corresponding to the triple (ma1 , m

a
2 , m

a
3) which is constant within the

domain Wa.
We claim that there are only two types of stable asymptotic behavior

of conductivity in the GSMF-limit (BQ.) for any single crystal normal
metal. Namely, the (‘‘topologically nontrivial’’) case of the strongly aniso-
tropic behavior of conductivity in the plane orthogonal to B corresponding
to some triple of Topological numbers and the (‘‘trivial’’) case of the
uniform decreasing of conductivity in any direction orthogonal to B for
BQ.. These cases cover the area on the 2-sphere of the full total measure,
so the generic directions are either of the first type or of the second type.
All other types of conductivity behavior in the GSMF-limit can not be
stable with respect to small rotations of B. We don’t give in this paper the
proofs of these facts because of their rather high topological complexity;
they can be found in the works. (11–13, 16–34) Let us introduce here notations
for these stable situations which we will use in this paper.

Situation A (Topologically Trivial Behavior). It is the case of
uniform decreasing of conductivity in the plane orthogonal to B for BQ..

Situation B (Topological Numbers and Topological Resonance).

This is the case of the strong anisotropy of conductivity in the plane
orthogonal to B with decreasing in just one direction in this plane for
BQ.. This direction can be described as the intersection of the plane
orthogonal to magnetic field with some integral plane (given by two recip-
rocal lattice vectors). The corresponding integral plane remains unchanged
under the small rotations of the magnetic field. Three integers characteriz-
ing this plane in the reciprocal lattice are exactly the observable topological
numbers. Topological Resonance claiming that the mean directions of all
open trajectories coincide for the generic magnetic field is a base of this
result. It was extracted by the present authors from the core of the topo-
logical works quoted above. As it was already mentioned, the conceptual
mistake has been made exactly here in the classical works of the Lifshitz
group.

As we said above there are no other stable cases. However, for the
complicated enough Fermi surfaces also highly nontrivial ‘‘chaotic’’
behavior of the conductivity tensor is possible (refs. 27, 28, 32, and 33) for
the set of directions of the zero measure. The trajectories of this type were
completely unknown in the classical literature. They were discovered
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recently in the topological works. (19, 25, 29) Chaotic trajectories can be divided
into two different classes:

(1) Weakly chaotic trajectories (the Tsarev type);

(2) Strongly chaotic trajectories (the Dynnikov type).

The trajectories of the first kind can appear only if the direction of B is
‘‘partly rational,’’ i.e., the plane P(B) orthogonal to B contains one (up to
the multiplier) reciprocal lattice vector. The trajectories of the second kind
can appear only if the direction of (B) is completely irrational, i.e., P(B)
does not contain any reciprocal lattice vectors. In the case when the direc-
tion of B is purely rational (i.e., P(B) contains two linearly independent
reciprocal lattice vectors) the chaotic electron trajectories can not appear.
The behavior of conductivity in GSMF-limit is very different for these

two classes. (27, 28, 32, 33) Thus in the case of weakly chaotic trajectories the
asymptotic expression of conductivity is just slightly different from the
Situation B in the higher order terms; it corresponds to the strongly aniso-
tropic behavior of conductivity in the plane P(B) for BQ.. (32, 33) This
regime is unstable with respect to the small rotations of B unlike the
regular case where the ‘‘Stability zones’’ can be observed.
The strongly chaotic trajectories, however, demonstrate completely

different behavior of s ik(B) in GSMF-limit. (27) Namely, in this case the
conductivity in the plane orthogonal to B decreases as BQ. (in all direc-
tions) with the different from the Situation A analytic dependence
on B. Besides that, in this case the part of the Fermi surface is excluded
from the conductivity along the direction of B for BQ.. The last fact
leads to the ‘‘sharp minimum’’ in the conductivity along B for the given
direction of B if the strongly chaotic trajectories appear. Usually the con-
ductivity along B remains finite in this ‘‘sharp minima’’ since only a part of
the Fermi surface plays role here. However, these minima can be observed
(on the unit sphere)–see Chapter 3 for the more detailed information.

2. TOPOLOGICALLY STABLE CASES

To define the ‘‘Degree of irrationality’’ of magnetic field with respect
to reciprocal lattice, let {g1, g2, g3} be the basis of the reciprocal lattice Cg

such that the vectors of Cg are given by all possible integer linear combina-
tions of {g1, g2, g3}. Then:

(1) The direction of B is rational (or has irrationality 1) if the plane
P(B) orthogonal to B contains two linearly independent reciprocal lattice
vectors.
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Fig. 1. The singular, compact and open non-singular trajectories. The signs ‘‘+’’ and ‘‘− ’’
show the regions of larger and smaller values of E(p)|P respectively.

(2) The direction of B has irrationality 2 if the plane P(B) contains
just one (up to multiplier) reciprocal lattice vector.

(3) The direction of B has irrationality 3 (or completely irrational) if
the plane P(B) does not contain any reciprocal lattice vectors.

The generic directions of the magnetic field are completely irrational.
The direction of B should be ‘‘specially chosen’’ to have irrationality 1 or 2.
We are going to consider now situations stable with respect to small rota-
tions of B. This means in particular that specific features of such cases
should not be connected with any kind of rationality of the direction of B,
i.e., they should reveal all their properties for the completely irrational
directions of magnetic field.
The electron trajectories are given by the intersections of the periodic

Fermi surface with the family of parallel planes orthogonal to the magnetic
field. For simplicity we will assume in this Chapter that the direction of B
is completely irrational (for example, no open periodic trajectories can
appear in the planes orthogonal to B). Let us postpone the specific
(unstable) features of rational directions to the next Chapter.
We call the trajectory non-singular if it is not adjacent to the critical

point. The trajectories adjacent to the critical points as well as the critical
points themselves we call singular trajectories.
We call the non-singular trajectory compact if it is closed on the plane.

We call the non-singular trajectory open if it is unbounded in R2.
The examples of singular, compact and open non-singular trajectories

are shown on the Fig. 1a–c.
We call the open trajectory topologically regular (i.e., corresponding to

the ‘‘topologically integrable’’ case) if it lies within the straight line strip of
the finite width in R2 and passes through it from −. to . (see Fig. 2a). All
other open trajectories we call chaotic (Fig. 2b).
Note that the topologically regular open trajectories are not periodic

at all which would contradict to the irrationality of the direction of B. In
fact they lie on some topological 2-tori (see below).3

3 The ergodic properties of trajectories on the 2-tori were investigated in refs. 14 and 15.
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Fig. 2. ‘‘Topologically regular’’ (a) and ‘‘chaotic’’ (b) open trajectories in the plane P
orthogonal to B.

To introduce now the ‘‘Carriers of open trajectories’’ and the ‘‘To-
pological numbers’’, we follow the convenient description (25, 29) of the Fermi
surface with the trajectories on it when the direction of B is fixed. We will
be interested first of all in the open electron trajectories in the p-space. Let
us say that in general just a part of the Fermi surface will be covered by the
open electron trajectories. The remaining part will contain compact (or
singular) trajectories. Let us remove all parts of the Fermi surface covered
by the non-singular compact trajectories. The remaining part

SF/(Compact Nonsingular Trajectories)=0
j
Sj

is a union of the 2-manifolds Sj with boundaries “Sj who are the compact
singular trajectories. The generic type in this case is a separatrix orbit with
just one critical point like on the Fig. 3.

B

Fig. 3. The cylinder of compact trajectories bounded by the singular orbits. (The simplest
case of just one critical point on the singular trajectory.)
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B

       orbits
Singular closed

Piece consisting of 
     open orbits

Open orbits

Critical points

2D discs

Fig. 4. The reconstructed constant energy surface with removed compact orbits and with the
two-dimensional discs attached to the singular orbits; in the generic case there is just one
critical point on every singular orbit.

We call every piece Sj the ‘‘Carrier of open trajectories.’’
These pieces of Fermi surface, however, have holes with boundaries.

They are not ‘‘closed manifolds’’ anymore. To get the closed manifolds let
us make the next step:
We fill in the holes by the topological 2D discs in the planes orthogo-

nal to B; finally we are coming to the closed surfaces

S̄j=Sj 2 (2D discs)

(see Fig. 4).
This procedure gives the periodic surface S̄F after the reconstruction

and we can define the ‘‘compactified carriers of open trajectories’’ both in
R3 and T3. Thus we have two representations of the reconstructed Fermi
surface:

(1) The compact surface without boundary embedded in the space of
quasimomenta T3 (consisting of several pieces without boundaries);

(2) The set of periodic two-dimensional surfaces without boundaries
in the covering space R3.

Let us formulate now our main intermediate result which was estab-
lished using the theorems extracted from the purely topological investiga-
tions (see, for example, ref. 12).
Fix the generic direction of B and consider the set {S̄j} carrying the open

electron trajectories. Then the only two situations can be topologically stable
with respect to the small rotations of B:
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(A) The set {S̄j} is empty;
(B) The set {S̄j} in the torus T3 consists of the even number of surfaces

homeomorphic to the two-dimensional tori T2j ; all of them have the same
homology class in H2(T3) up to the sign (sum of these classes is equal to
zero). This property was called the ‘‘Topological resonance.’’ The corre-
sponding representation of the set {S̄j} in total p-space R3 can be described as
follows:
The manifolds S̄j represent the periodically deformed two-dimensional

planes C(j) a embedded in R3 with the same common integer-valued mean
directions. In other words we have the set of periodically deformed (warped)
integral planes in R3 which are all parallel in average and do not intersect
each other. This picture remains unchanged after the small rotation of the
magnetic field.
Situation A corresponds to the absence of open electron trajectories on

the Fermi level. We comment now on Situation B. We call the two-dimen-
sional plane ‘‘integral’’ in R3 if it is generated by two reciprocal lattice
vectors. This Topological resonance plays a leading role here as was first
pointed out in refs. 23 and 28. The topological stability means in particular
that corresponding picture remains the same after any rotation of B small
enough: the number of connected components as well as the homological
classes of corresponding tori T2j are the same for all directions of B close
enough to the initial one. We make now the important physical conclusion
from our main statement and consider the corresponding corollaries for the
electrical conductivity.
It was also proved (29) that the total measure of the directions of B

where different situations can arise is zero on the unit sphere for the generic
Fermi surface SF.
We will consider these two situations described above as the main

basic foundation for the total classification of different regimes in the
GSMF-limit for the generic case.
Define now the ‘‘Topological numbers’’ observable in situation B

when we have regular open trajectories.
We call the ‘‘Topological numbers’’ corresponding to the stable open

electron trajectories the triple of integers (m1, m2, m3) representing the
integral 2-plane in the 3-space with reciprocal lattice. (Topologically it is a
common homology class of the 2-tori T2j in T

3.)
This integers (m1, m2, m3) can be extracted from common directions of

periodically deformed two-dimensional planes representing {S̄j} in R3 with
respect to reciprocal lattice Cg. Namely, the planes Ca can be defined from
the equation

m1a[x]1+m
2
a[x]2+m

3
a[x]3=0
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where [x]i are the coordinates in the basis {g1, g2, g3} of the reciprocal
lattice, or equivalently

m1a(x, l1)+m
2
a(x, l2)+m

3
a(x, l3)=0

where {l1, l2, l3} is the basis of the initial lattice in the coordinate space.
We can formulate now the main statement about the stable open

trajectories in our approach:
All stable open electron trajectories have the topologically regular form,

i.e., lie in the straight strips of the finite width in the planes orthogonal to B
in the p-space and pass through them. All trajectories of this kind have the
same mean directions for the given direction of B: in average they are parallel
to each other. The common direction of all these trajectories is given by the
intersection of plane P(B) orthogonal to B with some integral plane Ca which
is locally stable with respect to the small rotations of B.
The fact that all topologically regular trajectories are parallel to each

other expresses here the ‘‘Topological Resonance’’ property. It first
appeared in refs. 23 and 28. It seems that nothing like that was known in
the classical literature. In the work (3) for example the open electron trajec-
tories with different mean directions were mistakably demonstrated for
some analytic dispersion relations in the whole regions of the unit sphere
parameterizing directions of B. We claim however, that this situation is
completely impossible for any open region on the sphere. The important
property of topologically regular open trajectories lies in the following fact:
their contribution to the conductivity does not differ in the main order in
the GSMF-limit from the (anisotropic) contribution of open periodic
trajectories obtained in the old work. (1) It is very easy to prove this state-
ment taking into account that the motion of electron is linear plus some-
thing bounded: one should simply repeat the essential arguments of this old
work. The ‘‘Topological Resonance’’ claims more: all trajectories of this
kind give the same anisotropy in the same coordinate system. Only this
result makes this behavior experimentally observable. Let us present here
corresponding expressions for the conductivity in the GSMF-limit for two
situations described above.

Case A (Compact Trajectories Only).

s ik 4
ne2y
mg
R (wBy)

−2 (wBy)−1 (wBy)−1

(wBy)−1 (wBy)−2 (wBy)−1

(wBy)−1 (wBy)−1 f

S , wByQ. (2)
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Case B (Open Topologically Regular Trajectories).

s ik 4
ne2y
mg
R (wBy)

−2 (wBy)−1 (wBy)−1

(wBy)−1 f f
(wBy)−1 f f

S , wByQ. (3)

Here 4 means ‘‘of the same order in wBy and * are some constants
’ 1. We assume here that the z-axis is always directed along the magnetic
field B and the x-axis in the plane P(B) (orthogonal to B) is directed along
the common mean direction of the topologically regular trajectories in
p-space in the second case. Let us mention also that the relations (2)–(3)
give only the order of magnitude of s ik.
The anisotropy of the tensor s ik in the formula (3) gives the experi-

mental possibility of measuring the mean directions of the topologically
regular open orbits for rather big values of B. Using the rotations of the
direction of B it is possible also to find the ‘‘Stability zone’’ on the unit
sphere and to determine the corresponding ‘‘Topological numbers’’ char-
acterizing this stable situation. We see that there is only one direction ĝ in
the second case where the conductivity vanishes in the limit BQ..
According to the formula (3) this direction coincides with the common
mean direction of the topologically regular trajectories in the p-space (i.e.,
orthogonal to the mean direction of these trajectories in the coordinate
x-space). The direction ĝ(B) depends on the direction of magnetic field.
However, it varies in some integral plane Ca which is the same for the given
‘‘Stability zone.’’ We can claim that the direction of conductivity decreas-
ing ĝ=(g1, g2, g3) satisfies to the relation

m1a(ĝ, l1)+m
2
a(ĝ, l2)+m

3
a(ĝ, l3)=0

for all the points of stability zone Wa which makes possible the experimen-
tal observation of the numbers (m1a, m

2
a, m

3
a).

3. THE CHAOTIC CASES IN THE GSMF-LIMIT

Let us consider now the chaotic trajectories which can arise in the
special cases for rather complicated Fermi surfaces. One should remember
that they can appear only for a zero measure set of directions of the mag-
netic field. We think that for the generic Fermi surfaces the fractal (or
Hausdorf ) dimension of this set is strictly less than 1 (it was certainly
proved by Dynnikov that it is no more than 1 for the generic Fermi surfa-
ces, but it can be more for the nongeneric ones–see numerical studies in the
works. (29, 31) Anyway, there is no proof of this until now.
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We will first mention Tsarev’s example of weakly chaotic trajectory
having an asymptotic direction in R3. (19) We will not describe here the
details of corresponding Fermi surface (see ref. 33). The trajectory of this
kind can not be included in any straight strip of finite width in p-space.
However this trajectory has always asymptotic direction in the plane
orthogonal to B. The motion is linear plus smaller (but unbounded) terms.
We can always choose the coordinate system such that the average values
of the group velocities satisfy to the following condition:

OvxgrP=0, OvygrP ] 0, OvzgrP ] 0

Here again the z-axis coincides with the direction of B and the x-axis is
directed along the asymptotic direction of the chaotic trajectory in p-space.
The behavior of conductivity in GSMF-limit does not coincide com-

pletely with the formula (3), however following formulae for the s ik(B) can
be proved:

s ik(B) 4
ne2y
mg
Ro(1) o(1) o(1)
o(1) f f
o(1) f f

S , wByQ. (4)

which replaces the formula (3) for the case of weakly chaotic trajectories.
Let us omit here all details o and just point out that the asymptotic direc-
tion of the weakly chaotic trajectory can be also observed experimentally.
However, unlike the topologically regular case, the weakly chaotic trajec-
tories are unstable with respect to generic small rotations of B. They corre-
spond to some very small sets on the unit sphere. At last we say that the
trajectories of this kind can appear only for the direction of B of irratio-
nality 2, i.e., the plane P(B) should contain one reciprocal lattice vector in
this situation.
The more interesting strongly chaotic trajectories do not have any

asymptotic direction in R3 (see ref. 25). We just give the main features of
such trajectories.
First of all, these trajectories can arise only in the case of magnetic

field of irrationality 3. The carriers of such trajectories have the genus \ 3.
These trajectories are completely unstable with respect to the small rota-
tions of B. They can be observed for the special fixed directions of B only
in the case of the rather complicated Fermi surfaces. The approximate form
of some trajectories of this kind is shown at Fig. 2b. Moreover, if the genus
of Fermi surface is not very high (g < 6), the carrier of any strongly chaotic
trajectory is invariant under the involution p Q −p (after the appropriate
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choice of the initial point in T3). The ergodic theorem applied to the open
trajectories on the carrier gives the relations:

OvxgrP=0, OvygrP=0, OvzgrP=0

for all three components of the group velocity on any of such trajectories.
This important fact leads to the non-trivial behavior of corresponding
contribution to the conductivity for BQ.. Namely we can show that all
components of the corresponding contribution to s ik(B) actually tends to
zero in the limit BQ.. (27)We can write for this contribution:

s ik(B) 4
ne2y
mg
Ro(1) o(1) o(1)o(1) o(1) o(1)
o(1) o(1) o(1)

S (5)

for BQ..4

4 Actually the component szz(B) contains a non-vanishing term of the order of T2/E2F for
BQ. for non-zero temperatures. (27) However, this parameter is very small for the normal
metals; we don’t take it here into account.

We see that the strongly chaotic trajectories give the decreasing con-
tribution for conductivity even along the magnetic field B (for rather big
values of B). In the work (27) the special ‘‘scaling’’ asymptotic behavior of
s ik(B) were suggested. However, the full conductivity tensor includes also
the contribution of compact (closed) electron trajectories having the
form (2); it presents in all cases described above. So the strongly chaotic
behavior does not remove completely the conductivity along the magnetic
field B because of the contribution of compact trajectories. However, the
sharp local minimum in this conductivity can be observed in this case.
It can be proved (see ref. 29) that for the generic Fermi surfaces the

measure of directions of magnetic field B where the strongly chaotic
behavior can be found on the Fermi surface is equal to zero. However, the
total set on the unit sphere corresponding to the strongly chaotic trajec-
tories of this kind can be rather complicated set with the non-trivial
Hausdorf dimension. We expect that the Hausdorf dimension of this set is
strictly less than 1 for the generic Fermi surfaces. For the nongeneric cases
it might be even more than 1.
At last let us say that we expect that either the small stability zones or

the strongly chaotic trajectories in fact were observed in the experimental
data represented in ref. 4 (see refs. 27 and 28). However these data are not
detailed enough (for example the conductivity along magnetic field was not
measured in this experiments).
Let us describe now the total picture for the angle diagram of conduc-

tivity in normal metal in the case of geometric strong magnetic field
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limit. (32, 33) Namely, we can observe the following objects on the unit sphere
parameterizing the directions of B:

(1) The ‘‘stability zones’’ Wa corresponding to topologically regular
open trajectories and parameterized by some integral planes Ca in the
reciprocal lattice (‘‘Topological Numbers’’). All ‘‘stability zones’’ have the
piecewise smooth boundaries on S2.
The corresponding behavior of conductivity is described by the

formula (3) and reveals the strong anisotropy in the planes orthogonal to
the magnetic field. For the complicated Fermi surfaces we can observe also
the ‘‘sub-boundaries’’ of the stability zones where the coefficients in (3) can
have the sharp ‘‘jump’’ but do not change the ‘‘Topological Numbers’’
characterizing the ‘‘Stability zone’’ Wa.

(2) The net of the one-dimensional curves containing directions of
irrationality [ 2 where the additional periodic open trajectories in p-space
can appear. The corresponding parts of the net are always the parts of the
big (passing through the center of S2) circles orthogonal to some reciprocal
lattice vector. The asymptotic behavior of conductivity is given again by
the formula (3) but unstable with respect to the small rotations of B going
out from the corresponding curves.

(3) The ‘‘Special rational directions.’’ We call the special rational
direction the direction of B orthogonal to the integral plane Ca corre-
sponding to some stability zone Wa in case when this direction belongs to
the same stability zone on the unit sphere. We don’t discuss here all the
specific features which can appear in this situation and just say that some
specialties can arise here, see refs. 32 and 33 where all corresponding pos-
sibilities are discussed.

(4) The weakly chaotic open orbits (B of irrationality 2). We can
have points on the unit sphere where the open orbits are weakly chaotic.
All open trajectories still have the asymptotic direction in this case and the
conductivity reveals the strong anisotropy in the plane orthogonal to B as
BQ.. The B dependence, however is slightly different from the formula
(3) in this case.

(5) The strongly chaotic open orbits (B of irrationality 3).
For some points on S2 we can have the strongly chaotic open orbits on

the Fermi surface. At these points the local minimum of conductivity along
the magnetic field is expected. The conductivity along B however remains
finite as BQ. in general situation because of the contribution of compact
trajectories.

(6) At last we can have the open regions on the unit sphere where
only the compact trajectories on the Fermi level are present (Situation A).
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Fig. 5. The schematic representation of possible regimes for the different directions of the
magnetic field B on the unit sphere.

The asymptotic behavior of conductivity tensor is given then by the
formula (2).
In Fig. 5 we show the schematic picture of the regimes described above

for different directions of the magnetic field B.
Some new features connected with the ‘‘magnetic breakdown’’ (self-

intersecting Fermi surfaces) can be observed for rather strong magnetic
fields. Up to this point it has been assumed throughout that different parts
of the Fermi surface do not intersect each other. However, it is possible for
some special lattices that the different components of the Fermi surface
(parts corresponding to different conductivity bands) come very close to
each other and may have an effective ‘‘reconstruction’’ as a result of the
‘‘magnetic breakdown’’ in the strong magnetic field limit. In this case we
can have a situation in which the electron motion on the pieces of Fermi
surface intersect each other. However, the intersections with other pieces
do not affect at all the motion on one component. (The physical conditions
for the corresponding values of B can be found in ref. 8). In this case the
picture described above should be considered independently for the non-
selfintersecting pieces of Fermi surface. We can have simultaneously several
independent angle diagrams of this form on the unit sphere.
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